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The optimal phase-covariant quantum cloning machine �PQCM� broadcasts the information associated to an
input qubit into a multiqubit system, exploiting a partial a priori knowledge of the input state. This additional
a priori information leads to a higher fidelity than for the universal cloning. The present article first analyzes
different innovative schemes to implement the 1→3 PQCM. The method is then generalized to any 1→M
machine for an odd value of M by a theoretical approach based on the general angular momentum formalism.
Finally different experimental schemes based either on linear or nonlinear methods and valid for single photon
polarization encoded qubits are discussed.
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The problem of manipulating and controlling the flux of
quantum information between many quantum systems has in
general been tackled and solved by the theory of quantum
cloning and broadcasting �1–3�. From a practical point of
view, this feature renders the theory of cloning a fundamental
tool for the analysis of the security of quantum cryptographic
protocols, for the distribution of quantum information to
many partners, and for the transmission of information con-
tained in a system into correlations between many systems.
In spite of the fact that, for fundamental reasons, the quan-
tum cloning and flipping operations over an unknown qubit
��� are unrealizable in their exact forms �4,5�, they can be
optimally approximated by the corresponding universal
quantum machines, i.e., the universal optimal quantum clon-
ing machine �UQCM� and the universal-NOT �U-NOT� gate
�6�. The N→M UQCM transforms N input qubits in the state
��� into M output qubits, each one in the same mixed state
�out. The quality of the copies is quantified by the fidelity
parameter Funiv

N→M = ����out���= N+1+�
N+2 with �= N

M �1. The op-
timal quantum cloning machine has been experimentally re-
alized following different approaches: by exploiting the pro-
cess of stimulated emission �7–9�, by means of a quantum
network �10�, and by adopting projective operators into the
symmetric subspaces of many qubits �11–13�.

Not only the “universal” cloning of any unknown qubit is
forbidden, but also the cloning of subsets containing nonor-
thogonal states. This no-go theorem ensures the security of
cryptographic protocols as Bennett-Brassard �1984� �BB84�
�14�. Recently state-dependent, nonuniversal, optimal clon-
ing machines have been investigated where the cloner is op-
timal with respect to a given ensemble �15�. This partial a
priori knowledge of the state allows one to reach a higher
fidelity than for the universal cloning. The simplest and most
relevant case is represented by the cloning covariant under
the Abelian group U�1� of phase rotations, the so-called
“phase-covariant” cloning. There the information is encoded
in the phase �i of the input qubit belonging to any equatorial
plane i of the corresponding Bloch sphere. In this context the
general state may be expressed as ��i�= ���i�+exp�i�i���i

���
and ���i� , ��i

��	 is a convenient normalized basis, ��i ��i
��

=0 �15�. Precisely, in the general case the N→M phase co-

variant cloning map CNM satisfies the following covariance
relation, CNM�T�i

�N�NT�i
†�N�=T�i

�MCNM��N�T�i
†�M, where �N

is the density matrix of the N input qubits and T�i

=exp�− i
2�i�i�. There the �i Pauli operator identifies the set

of input states which are cloned, e.g., �Y corresponding to
states belonging to the x-z plane of the Bloch sphere. The
values of the optimal fidelities Fcov

N→M for this machine have
been found in Ref. �16�. Restricting the analysis to a single
input qubit to be cloned N=1 into M �1 copies, as we do
in the present paper, the “cloning fidelity” is found: Fcov

1→M

= 1
2

�1+ M+1
2M

� for M assuming odd values, or

Fcov
1→M = 1

2
�1+


M�M+2�

2M
� for M even. In particular, we have

Fcov
1→2=0.854 and Fcov

1→3=0.833 to be compared with the cor-
responding figures valid for universal cloning: Funiv

1→2=0.833
and Funiv

1→3=0.778.
In the present framework it is worthwhile to enlighten the

deep connection between the cloning processes and the
theory of quantum measurement �17�. Indeed, the concept of
universal quantum cloning is related to the problem of opti-
mal quantum state estimation since, for M→�, and �→0
the cloning fidelity converges toward the fidelity of state es-
timation of an arbitrary unknown qubit: Funiv

N→M →Festim
N

= N+1
N+2 �18�. In a similar way, the phase-covariant cloning is

connected with the estimation of an equatorial qubit, that is,
with the problem to find the optimal strategy to estimate
the value of the phase � �19,20�. The optimal strategy has
been found in �20�: it consists of a positive operator-valued
measure �POVM� measurement corresponding to a von
Neumann measurement onto the N input qubits characterized
by a set of N+1 orthogonal projectors and achieves a fidelity
Fphase

N . In general for M→�, Fcov
N→M →Fphase

N . In particular,
we have Fcov

1→M =Fphase
1 + 1

4M with Fphase
1 =3/4 for M assum-

ing odd values.
Recently the experimental realization of the 1→3 phase-

covariant quantum cloning machine �PQCM� has been re-
ported by adopting the methods of quantum optics �21�. The
present article introduces in Sec. I different alternative ap-
proaches to implement the 1→3 device for any quantum
information technique. To this purpose, the projection of the
input qubit and appropriate ancillary resources over the sym-
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metric subspace is exploited. In Sec. II such methods are
extended to any 1→M PQCM machine for odd values of M.
There the corresponding theoretical analysis based on the
well-established �J ,Jz� angular momentum formalism of a
general J-spin system will be given. Finally, in Sec. III dif-
ferent experimental schemes that can be adopted for a single-
photon polarization encoded qubit based either on linear
and/or nonlinear methods will be presented.

I. REALIZATION OF THE 1\3 PHASE-COVARIANT
CLONING MACHINE

In this section we describe two different techniques to
implement the 1→3 PQCM. �a� The first method combines
the implementation of a 1→2 UQCM, together with a spin
flipper �i and the projection of the output qubits over the
symmetric subspace: Fig. 1�a�. �b� The second one exploits
the symmetrization of the input qubit to clone with an ancil-
lary entangled pair: Fig. 1�b�.

We describe first the approach �a� introduced in �21�. The
input qubit is expressed as ���S=2−1/2��R�S+exp�i�Y��L�S�
=	�0�S+��1�S, with �R �L�=0, �	�2+ ���2=1, and 	, � real
parameters. Here we consider, in particular, the �Y covariant
cloning and �i=�Y realizes the NOT gate for the qubits be-
longing to the x-z plane. The output state of the 1→2
UQCM device reads

�
�SAB =
2

3
���S���A����B

−
1

6

����S����A + ����S���A����B, �1�

where the qubits S and A are the optimal cloned qubits while
the qubit B is the optimally flipped one. According to the
scheme represented by Fig. 1�a�, the idea is to exactly flip the

qubit B for a given subset of the Bloch sphere. This local
flipping transformation of ���B leads to

���SAB = �IS � IA � �Y��
�SAB

= 
2
3 ���S���A���B − 1


6
����S����A + ����S���A�����B.

By this nonuniversal cloning process three asymmetric
copies have been obtained: two clones �qubits S and A�
with fidelity 5 /6, and a third one �qubit B� with fidelity
2 /3. We may now project S, A, and B over the symmetric
subspace and obtain three symmetric clones with a
higher average fidelity. The symmetrization operator �SAB

3

reads as �SAB
3 = ��1���1�+ ��2���2�+ ��3���3�+ ��4���4�,

where ��1�= ���S���A���B, ��2�= ����S����A����B, ��3�
= 1


3
������������+ �����������+ ������������, and ��4�

= 1

3

�����������+ ����������+ �����������. The symmetric
subspace has dimension 4 since three qubits are involved.
The probability of success of the projection is equal to 8

9 . The
normalized output state �
�SAB=�SAB

3 ���SAB is

�
�SAB =
1

2

3����S���A���B − 3−1����S����A����B

+ ����S���A����B + ����S����A���B�� . �2�

Let us now estimate the output reduced density matrices of
the qubits S, A, and B: �S=�A=�B= 5

6 ������+ 1
6 ��������.

This leads to the fidelity Fcov
1→3=5/6 equal to the optimal one

obtained in the general case �15,16�. By applying a different
unitary operator �i to the qubit B we can implement the
phase-covariant cloning for the corresponding different equa-
torial planes of the Bloch sphere, orthogonal to the i axis.

Let us now consider the second approach �b�, which rep-
resents an innovative simplification of the previous scheme.
The PQCM device can be realized by applying the symme-
trization projection �SAB

3 to the input qubit and to an ancil-
lary entangled pair ��+�AB= 1


2
��0�A�0�B+ �1�A�1�B�. The output

state reads

�SAB
3 ����S � ��+�AB� = �
�SAB. �3�

Again the qubits S, A, and B are found to be the optimal
phase-covariant clones of the input one. By modifying the
ancillary entangled state, the set of states cloned is changed.
Indeed the state ��+�AB leads to the PQCM machine for the
y-z plane, while ��−�AB for the x-y plane. Such result is at
variance with the one found for the universal cloning process
�12�. The 1→3 UQCM of Ref. �12� can be achieved by
applying the projector �SAB

3 to the qubit ���S and to two
ancillas qubits, each one in a fully mixed state I

2 .

II. GENERAL APPROACH: 1\M DEVICE

In the present section we generalize the previous scheme
for an arbitrary odd number of clones. The 1→M =2P−1
PQCM can realized through two approaches: the first one �a�
exploits the universal cloning machine, covariant flipping,
and final symmetrization while the second one �b� is based
on appropriate symmetrization of the input qubit with ancil-
lary entangled pairs of qubits.

(a)

(b)

2
ancillas

1 input

1�2
UQCM

covariant flippinganticlone

3

clones

3
clones

1 input

Entangled
pair

�

�

0

��

�3

�3

S

A

B

S

A

B

FIG. 1. �Color online� Scheme for the realization of the 1→3
PQCM. �a� UQCM, phase-covariant flipping, and projection of the
output state over the symmetric subspace adopting �3. �b� Symme-
trization process acting on the input qubit and one entangled pair of
qubits.
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Let us consider the scheme of Fig. 2�a�. The 1→P
UQCM broadcasts the information on the input qubit over
2P−1 qubits. The overall output state after the UQCM map
reads

���� = �
k=0

P−1

bk���P − k��;k��	�C � ��k�;�P − 1 − k���	�AC,

�4�

where bk= �−1�k
 2
P+1


�P−1�!�P−k�!

P!�P−1−k�! and the notation

��p� ;q��	� stands for a total symmetric combination of p
qubits in the state ��� and of q qubits in the state ���� �6�.
The labels C and AC identify, respectively, the cloning and
anticloning subsystems. Hereafter, we assume the input qubit
to be in the state ���= �0� without lack of generality. We
associate to each qubit state a spin 1

2 system. The previous
expression can hence be expressed by exploiting the formal-
ism of the angular momentum �J ,Jz� of a general J-spin sys-
tem. The overall state in the basis �j ;mj�C � �j ;mj�AC reads

���� = �
k=0

P−1

bk�P

2
;
P

2
− k


C

� �P − 1

2
;
− �P − 1�

2
+ k


AC
.

�5�

In the above representation, the overall output state of the
cloner is written as the composition of two angular momenta:
JC ,JAC defined, respectively, over the “cloning” and “anti-
cloning” output channels.

As the following step, a covariant flipping process is ap-
plied to the subspace AC transforming ���� into

���� = IC � ��Y
��P−1��AC����

= �
k=0

P−1

bk�P

2
;
P

2
− k


C

� �P − 1

2
;
�P − 1�

2
− k


AC
.

�6�

Such an expression holds for any qubit belonging to the
equatorial plane under consideration. Let us now express
���� adopting the overall angular momentum JT=JC+JAC in
the basis �jC ; jAC ; jT ;mT�

���� = �
jT=1/2

2P−1

�
mT=−jT

jT

c�jT,mT��P

2
;
P − 1

2
; jT;mT
 , �7�

where c�jT ,mT� can be derived exploiting the Clebsch-
Gordan coefficient �j1 ; j2 ;m1 ;m2 � j1 ; j2 ; jT ;mT� with j1= P

2 ,

j2= P−1
2 , m1k= P

2 −k, m2k=
�P−1�

2 −k �22�.
To complete the protocol, the overall output state is sym-

metrized by applying the projector �M with M =2P−1 de-
fined as �M =� j=0

M � P
2 ; P−1

2 ; M
2 ; M

2 − j�� P
2 ; P−1

2 ; M
2 ; M

2 − j�. The
nonvanishing contributions to the projected state comes from
terms with jT= 2P−1

2 . After the action of �M we obtain the
following normalized output state

���� = �
k=0

P−1

dk�P

2
;
P − 1

2
;
2P − 1

2
;
2P − 1

2
− 2k


with

dk = �− 1�k
 2

P + 1
�P − 1

k
��2P − 1

2k
�−1/2

and the normalization factor reads

��M�����2 =
2

P + 1 �
k=0

P−1 �P − 1

k
�2

�2P − 1

2k
� . �8�

The fidelities of the phase-covariant cloning process can be
inferred rearranging the output state as follows

��M� = �
k=0

2P−1

dk���2P − 1 − 2k��;2k��	� . �9�

All the 2P−1 qubits belonging to such a state have an iden-
tical reduced density matrix equal to

�cov = F1→M������ + �1 − F1→M��������� �10�

with

F1→M =
1

2
�1 +

M + 1

2M
� .

The previous expression has been demonstrated numerically,
for values of M up to 2000, and is found equal to the optimal
one.

As an alternative approach, the 1→M PQCM device can
be obtained by applying the symmetrization projector �M

over the input qubit and �P−1� ancilla entangled pairs

(a)

(b)

2(P-1)
ancillas

1 input

�2P-11�P
UQCM

covariant flippinganticlones

2P-1

clones

2P-1
clones

1 input

P-1 entangled
pairs

�

�

0

��

�2P-1

FIG. 2. �Color online� General scheme for the realization of the
1→ �2P−1� PQCM. �a� 1→P UQCM, phase-covariant flipping,
and projection of the output state over the symmetric subspace ap-
plying the projector �2P−1. �b� Symmetrization process acting on
the input qubit and �P−1� entangled pairs of qubits.
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��+�AB: Fig. 2�b�. Such a result can easily be obtained by
manipulating the scheme of Fig. 2�a� as follows. The UQCM
of Fig. 2�a� can be realized starting from the input qubit ���
and �P−1� entangled pairs ��−�AB as shown in Ref. �12�. The
cloning map is achieved by symmetrization of the input qubit
and �P−1� ancilla qubits A, each one belonging to an en-
tangled pair ��−�AB,

�SA
P

� IB
P−1����S��−�AB

��P−1�� . �11�

The output state is equal to the one ���� of Eq. �5� up to a
normalization factor. To implement the PQCM device, the
covariant flipping �Y is then applied to the �P−1� qubits
belonging to the subset B,

�ISA
P

� �Y−B
��P−1����SA

P
� IB

P−1����S��−�AB
��P−1���

= ��SA
P

� IB
P−1����S��+�AB

��P−1��� . �12�

As the final step the overall state is projected into the sym-
metric subspace through the projector �SAB

2P−1,

���� = �SAB
2P−1��SA

P
� IB

P−1������+�AB
��P−1��� �13�

=�SAB
2P−1����S��+�AB

��P−1�� . �14�

In the previous expression we have exploited the concatena-
tion property of the symmetrization projector �SAB

2P−1��SA
P

� IB
P−1�=�SAB

2P−1, which has been demonstrated experimentally
in Ref. �23�. This concludes our simple proof of the scheme
of Fig. 2�b�.

III. REALIZATION BY QUANTUM OPTICS

In quantum optics the qubit can be implemented by ex-
ploiting the isomorphism between the qubit state ���=	�0�
+��1� and the polarization state 	�H�+��V� of a single pho-
ton. In this context it has been proposed to realize the unitary
transformation, UN→M, leading to the deterministic UQCM,
by means of the “quantum injected” optical parametric am-
plification �QIOPA� in the entangled configuration. The ex-
perimental demonstrations of both optimal cloning and flip-
ping processes by exploiting this technique have been
reported in �8,12,13�. At the same time, a different scenario
has been disclosed by the discovery that it is possible to
implement contextually the 1→2 universal quantum cloning
machine �UQCM� and the 1→1 universal NOT gate by modi-
fying the quantum state teleportation protocol �11,12�. The
last procedure is based on a symmetric projective operation
realized by combining single-photon interferometry and
postselection techniques, and it can be extended to the ge-
neric N→M cloning device.

The symmetrization of two polarization encoded qubits
can be achieved by letting two independent qubits impinge
onto the input arms of a beam splitter �BS� in an Hong-Ou-
Mandel interferometer �24�, and then by probabilistically
postselecting the events in which the two photons emerge in
the same spatial output mode. The basic principle at the heart
of these realizations is the following: the two photons are
initially superimposed at the BS interface in order to make
them indistinguishable; then, a spatial symmetric wave func-

tion of the two photons is postselected by the measurement
apparatus. Such a scheme can be extended in a controlled
way to a higher number of photons, as shown in Ref. �23�.
There a linear optics multiqubit symmetrization apparatus
has been realized by a chain of interconnected Hong-Ou-
Mandel interferometers.

Here we introduce a variety of schemes which can be
realized through the methods of quantum optics outlined
above. We restrict our attention to the 1→3 PQCM; the
diagram below can be easily extended to the general case 1
→M for odd values of M following the guidelines of the
previous section. Let us consider first the linear optics ap-
proach. Figure 3 shows the experimental scheme implement-
ing, respectively, the scheme of Fig. 1�a�, �A�, and Fig. 1�b�,
�B�. The flipping operation �Y is realized by means of two
� /2 waveplates acting on the polarization state, while the
symmetrization is implemented by overlapping the incoming
photons on a beam splitter and postselecting the events in
which they emerge over the same mode, as said. We note that
such a scheme is similar to the one recently proposed by
Zou et al. �25� to implement the 1→3 PQCM for photonic
qubits.

Finally let us observe that the same results can be ob-
tained adopting nonlinear methods. We consider the 1→3
PQCM, in particular the optimal quantum cloning for x−z
equatorial qubits by taking linear polarization states as input.
The UQCM has been realized by adopting a quantum-
injected optical parametric amplifier �QIOPA�, while the �Y

Linear methods

flipping

(A) (B)

“0”“0” “0”
� �

BS BS BS

Non-Linear methods
(A) (B)

Type II crystal
collinear

“0”flipping

Type II crystal
non collinear

�� ��

�

BS�

FIG. 3. �Color online� Linear methods: �a� schematic diagram of
the linear optics multiqubit symmetrization apparatus realized by a
chain of interconnected Hong-Ou-Mandel interferometers; �b� sym-
metrization of the input photon and the ancilla polarization en-
tangled pairs. Nonlinear methods: �a� UQCM by optical parametric
amplification, flipping by a couple of waveplates, and projection
over the symmetric subspace; �b� collinear optical parametric am-
plification within a type II BBO �beta-barium borate� crystal.
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operation and the �3 projection have been implemented with
linear optics and postselection techniques, Fig. 3�a�. The flip-
ping operation on the output mode kAC was realized by
means of two � /2 waveplates, while the physical implemen-
tation of the projector �3 on the three photons states was
carried out by linearly superimposing the modes kC and kAC
on the 50:50 beam splitter BS and then by selecting the case
in which the three photons emerged from BS on the same
output mode kPC �or, alternatively, on kPC� �.

Interestingly, the same overall state evolution can also be
obtained, with no need of the final BS symmetrization, at the
output of a QIOPA with a type II crystal working in a col-
linear configuration, �b� �26�. In this case the interaction

Hamiltonian Ĥcoll= i���âH
† âV

†�+H.c. acts on a single spatial

mode k. A fundamental physical property of Ĥcoll consists of
its rotational invariance under U�1� transformations, that is,

under any arbitrary rotation around the z axis. Indeed Ĥcoll

can be re-expressed as 1
2 i��e−i��â�

†2−ei2�â��
†2 �+H.c. for �

� �0,2��, where â�
† =2−1/2�âH

† +ei�âV
†� and â��

† =2−1/2�
−e−i�âH

† + âV
†�. Let us consider an injected single photon with

polarization state ���in=2−1/2��H�+ei��V��= �1,0�k, where
�m ,n�k represents a product state with m photons of the mode
k with polarization �, and n photons with polarization ��.
The first contribution to the amplified state, 
6�3,0�k
−
2ei2��1,2�k is identical to the output state obtained with
the device introduced above up to a phase factor which does
not affect the fidelity value.

CONCLUSIONS

We have introduced different schemes to implement the
optimal 1→M �1 phase covariant cloning machine, by ex-

ploiting the projection of the input qubit and ancillary re-
sources over the symmetric subspace. The present technique
is probabilistic; however, such limitation does not spoil the
main physical relevance since the optimal fidelity value of
the phase-covariant cloning cannot be improved by any
probabilistic procedure implementation �27�. We also note
that these schemes do not hold for even values of M, a result
consistent with the underlying feature of the PQCM. Indeed
it has been noticed that different properties affect the 1
→2P and 1→ �2P−1� PQCM maps �15�. Recently an opti-
cal scheme to realize the 1→2 PQCM has been proposed
�28� and realized experimentally �29�.

The experimental realization of the different cloning pro-
tocols with the standard quantum optics techniques has also
been discussed. There we answered the question recently
raised by Scarani et al. �1� concerning the possibility of
implementing any cloning transformation, different from the
universal one, adopting the process of amplification through
stimulated emission. The PQCM can be implemented di-
rectly either by linear optics elements, or by a nonlinear,
quantum injected optical parametric amplification process in
a collinear configuration. The generalization of such schemes
to a higher number of input qubits N�1 has been found to
be nonoptimal and hence deserves further investigation.

Finally we shall mention that the present cloning maps are
economical, that is, do not require any extra physical re-
sources than the clone qubits �30�.
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