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Loophole-free Bell tests for quantum nonlocality and long-distance secure communication require photodetec-
tion efficiencies beyond a threshold ηcrit that depends on the Bell inequality and the noise affecting the entangled
state received by the distant parties. Most calculations of ηcrit assume that the noise is random and can be modeled
as white noise. However, most sources suffer from colored noise. Indeed, since entangled states are usually created
as a superposition of two possible deexcitation paths, a partial distinguishability between the two processes leads
to the appearance of colored noise in the generated state. Recently, there was a proposal for a loophole-free
Bell test [A. Cabello and F. Sciarrino, Phys. Rev. X 2, 021010 (2012)], where a specific colored noise appears
as a consequence of the precertification of the photon’s presence through single-photon spontaneous parametric
down-conversion. Here we obtain ηcrit, the optimal quantum states, and the local settings for a loophole-free Bell
test as a function of the amount of colored noise. We consider three bipartite Bell inequalities with n dichotomic
settings: Clauser-Horne-Shimony-Holt (n = 2), I3322 (n = 3), and A5 (n = 4), both for the case of symmetric
efficiencies, corresponding to photon-photon Bell tests, and for the totally asymmetric case, corresponding to
atom-photon Bell tests. Remarkably, in all these cases, ηcrit is robust against the colored noise. The present
analysis can find application in any test of Bell inequalities in which the dominant noise is of the colored type.
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I. INTRODUCTION

One of the most surprising predictions of quantum me-
chanics is that events for which no causal relationship exists
(since nothing at the speed of light or slower can connect
them) exhibit correlations that do not admit any explanation
in terms of local hidden variables [1]. The quest for an
incontrovertible experimental confirmation of this prediction
is one of the fundamental challenges of modern science. Such
confirmation, certified by means of a loophole-free violation of
Bell inequalities [1–3], would not only rule out the possibility
of describing nature with local hidden variable theories, but
would also prove the feasibility of important applications such
as secure communication based on physical principles [4–6].

So far, the results of all the experiments testing Bell
inequalities (see, e.g., Refs. [7–13]) admit explanations in
terms of local hidden variables. Assuming that quantum
mechanics is correct, the reason why these experiments still
do not rule out local hidden variables is simply that none of
them satisfies all the conditions under which Bell inequalities
are derived. Specifically, they do not simultaneously satisfy
the following three conditions: (i) The observers’s local
measurement choices are independent and random, (ii) one
observer’s local measurement choice and the other observer’s
local measurement result are spacelike separated, and (iii) the
overall detection efficiency η, defined as the ratio between
detected events and prepared systems, is above a threshold
ηcrit. Otherwise, the detected events can apparently violate
Bell inequalities, whereas the prepared systems do not [14].
The value of ηcrit depends on the Bell inequality and the state
considered. For instance, for the Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality [2,3], ηcrit ≈ 0.67 for partially
entangled states and increases with noise [15].

Hence it is crucial to optimize the strategy, namely, the
choice of the Bell inequality and the observables to measure,
in order to minimize the required detection efficiency ηcrit for
a given experimental platform. This optimization has been
previously carried out for white noise [15–18]. However,
the large majority of adopted sources suffer from colored
noise [19]. Indeed, since entangled state are usually created
as a superposition of two possible deexcitation paths, a
partial distinguishability between the two processes leads to
the appearance of colored noise in the generated state. The
partial distinguishability can arise as a consequence of a
spectral, temporal, or spatial mismatch between the particle
wave packets emitted in the two possible processes. These
considerations are true for the generation of photon-photon
and hybrid atom-photon entangled states.

Recently, a novel experimental scheme to achieve a
loophole-free Bell test adopting a precertification technique
was proposed in Ref. [20]. The scheme works as follows.
Consider two spatially separated observers, Alice and Bob,
and a source between them. The source simultaneously emits
two photons A and B. Photon A is sent to Alice’s location and
photon B to Bob’s. The key point of the scheme is to precertify
the presence of a photon in Alice’s (and Bob’s) location before
she (he) has decided which local measurement will perform.
This is achieved by splitting photon A (B) into two photons
A1 and A2 (B1 and B2) by using an enhanced single-photon
spontaneous parametric down-conversion. Photon A2 (B2)
is then detected by a fast nanowire-based superconducting
single-photon detector, certifying the presence of photon A1
(B1) before the local measurement is fixed. The configuration
of the setup is such that photon A1 (B1) bears the same
information initially encoded in photon A (B). Finally, the
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local measurement is performed and photon A1 (B1) is
detected with a superconducting transition-edge sensor (TES),
which has a very high detection efficiency. (For details,
see Ref. [20].) The advantage of this scheme with respect
to previous proposals is that the Bell test only involves
events in which photons A2 and B2 are detected. In this
way, the transmission losses between the source of photons
and Alice and Bob’s locations do not affect η since the
effective transmission efficiency is boosted up to one (η is
the product of the transmission efficiency and the detector
efficiency). Photons A1 and B1 can be prepared in a mode
highly coupled with the corresponding TESs at the cost of
a reduced experiment rate, but without affecting the final
detection efficiency. Remarkably, the noise introduced by the
precertification process in the final state of photons A1 and B1
is not random noise that can be modeled as white noise, as it
is usually assumed in most calculations of ηcrit [15–18], but is
a colored one.

The goal of this paper is to obtain ηcrit, the optimal
quantum states, and the local settings for different bipartite Bell
inequalities, assuming the specific colored noise characteristic
of the precertification scheme. Then we compare these ηcrit

values with those for Bell tests affected by white noise and
discuss the implications for actual experiments. The paper is
organized as follows. In Sec. II we describe the expressions
of the quantum states generated while the source is affected
by colored noise. The first scenario considered is related
to a photon-photon Bell test exploiting the precertification
technique. However, it may also correspond to standard Bell
tests based on the spontaneous parametric down-conversion
source. The second scenario corresponds to an atom-photon
Bell test in which the atom is detected with high efficiency
and only the photon is affected by colored noise. In Sec. III
we describe the three bipartite Bell inequalities considered
in our study and explain why we picked them. In Sec. IV A
we explain how ηcrit, the optimal states, and the local settings
are calculated for the quantum states and Bell inequalities
discussed in the preceding sections. The results of these
calculations are presented and discussed in Secs. IV B–IV E.

II. QUANTUM STATES IN BELL TESTS WITH
COLORED NOISE

A. Noise for photon-photon Bell tests

We assume that the source initially produces pairs of
photons A and B entangled in polarization in the two-qubit
entangled state

|ψ〉 = C|HV 〉 + S|V H 〉, (1)

where |HV 〉 is the state in which photon A has horizontal
H polarization and photon B has vertical V polarization,
C = cos(θ ), and S = sin(θ ). As a consequence of a residual
distinguishability between the emission of photon pairs with
horizontal and vertical polarizations, the initial state of photons
A and B is transformed into the following state of photons A1
and B1:

ρ = C2|HV 〉〈HV | + S2|V H 〉〈V H |
+ (1 − p)2CS(|HV 〉〈V H | + |V H 〉〈HV |), (2)

where p is the distinguishability between H and V . The
square factor arises since each photon is affected by a partial
distinguishability. Hereafter we will assume that for photon-
photon Bell tests, the states (2) are the ones reaching the
photodetectors.

B. Noise for atom-photon Bell tests

In an atom-photon Bell test, the atom is detected with high
(ideally perfect) efficiency. Instead of state (2), we consider
the resulting state as

ρ ′ = C2|HV 〉〈HV | + S2|V H 〉〈V H |
+ (1 − p)CS(|HV 〉〈V H | + |V H 〉〈HV |), (3)

where we have (1 − p), instead of (1 − p)2, because only
the photon is affected by colored noise. Hereafter we will
assume that for atom-photon Bell tests, the states (3) are the
ones reaching the detectors. The difference between states
(2) and (3) has been introduced to simplify the connection
with the precertification-based loophole-free test introduced
in Ref. [20]. Indeed, when an atom-photon scheme is adopted
the precertification stage is introduced only in one part of the
entangled state, thus reducing the colored noise added to the
state.

III. BELL INEQUALITIES

Bipartite Bell inequalities are linear combinations of
probabilities P (a,b|x,y) of obtaining the result a for the
measurement x in Alice’s side and the result b for the
measurement y in Bob’s side, which for any local hidden
variables theory have a bound that is violated by the predictions
of quantum mechanics. We will focus on three specific tight
(i.e., belonging to the minimal set that separates quantum from
local correlations [21,22]) bipartite Bell inequalities.

A. The CHSH inequality

The CHSH Bell inequality [2,3] has two settings for each
party (i.e., x,y ∈ {0,1}), each of them with two outcomes
(i.e., a,b ∈ {0,1}). It is the only tight Bell inequality with two
dichotomic settings for each party [21]. It can be written [3]
as

ICHSH = P (0,0|0,0) + P (0,0|0,1) + P (0,0|1,0)

−P (0,0|1,1) − P (0, |0, ) − P ( ,0| ,0) � 0, (4)

where P (0, |0, ) is the marginal probability of obtaining 0
for the measurement 0 on Alice’s side. In the absence of
noise, ηcrit ≈ 0.67 using partially entangled states [15] and
ηcrit ≈ 0.83 using maximally entangled states, assuming that
all the detectors have the same efficiency [15,23]. In the case
that only Alice’s detector has perfect efficiency, ηcrit = 0.50
using partially entangled states [16,17] and ηcrit = 0.71 using
maximally entangled states [24,25]. The CHSH is the simplest
Bell inequality and the bipartite Bell inequality that requires
the lowest threshold η using qubits to date.

B. The I3322 inequality

The I3322 Bell inequality [26–28] is the only tight bipartite
Bell inequality with three dichotomic settings [28]. We will
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use the asymmetric version of Ref. [29], which is given by

I3322 = P (0,0|0,0) + P (0,0|0,1) + P (0,0|0,2)

+P (0,0|1,0) + P (0,0|1,1) − P (0,0|1,2)

+P (0,0|2,0) − P (0,0|2,1)

− 2P (0, |0, ) − P (0, |1, ) − P ( ,0| ,0) � 0. (5)

Our interest in the I3322 inequality is due to the fact that, in the
absence of noise, ηcrit = 0.43, assuming that Alice’s detectors
have perfect efficiency [17].

C. The A5 inequality

Finally, among the 26 tight bipartite Bell inequalities with
four dichotomic settings of Ref. [29], we will use the one
called A5, introduced in Ref. [30]. Specifically, we will use
the following asymmetric version of the A5 inequality:

A5 = P (0,0|0,1) + P (0,0|0,2) − P (0,0|0,3)

+P (0,0|1,0) + P (0,0|1,1) − P (0,0|1,2)

+P (0,0|1,3) + P (0,0|2,0) + P (0,0|2,2)

+P (0,0|2,3) + P (0,0|3,0) − P (0,0|3,3)

−P (0, |0, ) − P (0, |1, ) − 2P (0, |2, )

−P ( ,0| ,0) − P ( ,0| ,1) � 0. (6)

The A5 inequallity is of interest to us because, in the absence of
noise and using maximally entangled states, it requires ηcrit =
0.8214 for the photon-photon scenario, which is (slightly)
smaller than required efficiency of the CHSH inequality, the
I3322, or any of the 26 tight bipartite Bell inequalities with four
dichotomic settings of Ref. [29].

IV. RESULTS

A. Method

Once we have the quantum states Alice and Bob will receive
(see Sec. II) and the Bell inequalities (see Sec. III), the next
step is to modify the Bell inequalities to take into account the
nonperfect η of the detectors. It is always possible to rewrite
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FIG. 1. (Color online) Minimum ηcrit for all the states of the form
(2) with a given level p of colored noise for the CHSH, I3322, and
A5 Bell inequalities, under the assumption that all detectors have the
same efficiency, as is usually the case in photon-photon Bell tests.
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FIG. 2. (Color online) Minimum ηcrit for all the states of the form
(3) with a given level p of colored noise for the CHSH, I3322, and
A5 Bell inequalities, under the assumption that Alice’s detectors are
perfect and Bob’s have the same efficiency, as is approximately the
case in atom-photon Bell tests.

Bell inequalities in terms of η [15,31]. The modified Bell
inequalities are only violated when η > ηcrit.

We will assume that the local measurements performed by
Alice and Bob are two-outcome von Neumann measurements
(i.e., maximal qubit measurements) associated with the fol-
lowing orthogonal states:

|u(k)〉φ = cos φ|+(k)〉 − eiνφ sin φ|−(k)〉, (7a)

|v(k)〉φ = sin φ|+(k)〉 + eiνφ cos φ|−(k)〉, (7b)

where k = 1 denotes Alice and k = 2 denotes Bob. In terms
of this basis, the local measurement in which the experimental
apparatus has the orientation φ is represented by the projector
P

(k)
φ = |v(k)〉φ〈v(k)|.

In the Bell tests based on the CHSH inequality, each party
can choose between two different projective measurements
(with a total of four measurements, defined in our case by φ1,
φ2, φ3, and φ4). Thus the CHSH inequality is a two-setting
Bell inequality. However, the I3322 and A5 are, respectively,
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ηcrit , p 0 m in ηcrit 0.667 0.001

FIG. 3. (Color online) Threshold ηcrit for photon-photon Bell tests
of the CHSH inequality using different states of the form (2). The
degree of entanglement of the state is denoted by C/S: 0 means
nonentangled states and 1 maximally entangled states. The minimum
ηcrit for each value of p is explicitly shown in the legend.

012113-3
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FIG. 4. (Color online) Threshold ηcrit for atom-photon Bell tests
of the I3322 inequality using different states of the form (3). The degree
of entanglement of the state is denoted by C/S. The minimum ηcrit

for each value of p is explicitly shown in the legend.

three- and four-setting Bell inequalities. The value of ηcrit

is a function that depends on the parameters {φi} and {νφi
},

whose number increases with the number of settings of the
Bell inequality. In the case of the CHSH inequality, ηcrit is an
eight-variable function, while for the I3322 and A5, ηcrit is a 12-
and 16-variable function, respectively.

For a given degree of entanglement (i.e., value of C/S),
level of noise p, and Bell inequality, ηcrit has been numerically
obtained using the conjugate gradient (CG) method [32]. The
CG method is a heuristic numerical search algorithm that uses
the local gradient in a given initial point of the parameter
space (defined by {φi} and {νφi

}) to reach the local minimum
point. It converges when the gradient is zero. To map all the
local minima for η and determine the global minimum (i.e.,
ηcrit), it is necessary to run the CG program for a large and
uniform sample of initial points in the parameter space of the
corresponding Bell inequality. In order to certify that the global
minimum had been actually reached for each of the scenarios,
we ran the CG program for samples of more than 105 points
for each state considered.

We have used this method to systematically explore the
three Bell inequalities for both the photon-photon and the
atom-photon scenarios. This provides not only the values
of ηcrit for the different scenarios, but also the optimal
quantum states and local settings as functions of the degree of
entanglement and noise of the states and allows us to compare
the cases of colored noise and white noise. We have organized
all this information in the following sections.

B. Threshold detection efficiencies

For the photon-photon Bell test, we have obtained the
minimum ηcrit for all the states of the form (2) with a given
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FIG. 5. (Color online) (a) Value of ICHSH as a function of the white noise p and degree of entanglement C/S of the state for a photon-photon
Bell test. (b) Violation of the CHSH inequality for specific values of p. (c) Value of ICHSH as a function of the degree of entanglement C/S and
for different values of the colored noise p for a photon-photon Bell test. (d) Value of I3322 as a function of the degree of entanglement C/S and
for different values of the colored noise p for an atom-photon Bell test.
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TABLE I. Local settings {φi,νφi
} for the CHSH inequality in the photon-photon scenario (ηA = ηB ).

p C/S ICHSH ηcrit φ1 φ2 φ3 φ4 νφ1 νφ2 νφ3 νφ4

0 0.2041 0.0362 0.6999 4.7619 1.1651 3.0921 −0.4057 3.4437 3.4437 0.3021 3.4437
0.03 0.2041 0.0323 0.7223 1.6180 1.1747 3.1888 0.3961 0.9047 0.9047 0.9047 4.0463

level p of noise, for the three Bell inequalities. The results are
shown in Fig. 1. They clearly show that the best option for
a photon-photon loophole-free Bell test affected by colored
noise is the CHSH inequality: Not only does it require the
fewest settings, but also the lowest ηcrit. For example, for
p < 0.04, η > 0.70 is in principle sufficient to certify a
loophole-free violation (for more details, see below), while
the required η is substantially higher using inequalities with
more settings.

The conclusion is different for an atom-photon Bell test.
Figure 2 shows the minimum ηcrit for all the states of the form
(3) with a given level p of noise, for the three Bell inequalities.
In this scenario, the Bell inequality requiring lower η for any
p is I3322. We have found no benefit in using a Bell inequality
with four local settings per party.

C. Effect of the colored noise in the threshold efficiencies

The next question is which are the quantum states requiring
lower values of η. Hereafter we will focus on the two most
interesting scenarios: the photon-photon test of the CHSH
inequality and the atom-photon test of the I3322 inequality.

Figure 3 shows ηcrit for photon-photon Bell tests of the
CHSH inequality using different states of the form (2). The
entanglement of the states is given by C/S: C = 0 means
that the states are product sates and C/S = 1 means that
they are maximally entangled. Figure 3 shows that weakly
entangled states require smaller values of ηcrit than strongly
entangled states and adding small levels of colored noise
slightly increases ηcrit.

Figure 4 shows that a similar conclusion can be drawn for
atom-photon tests of I3322 with states of the form (3). Again,
weakly entangled states require smaller values of ηcrit than
strongly entangled ones and adding small levels of colored
noise slightly increases ηcrit.

D. Optimal settings for a realistic violation

Figure 5 is useful to identify which are the optimal states for
a realistic Bell test with colored noise and also to distinguish
the situation from the one in which white noise is assumed.
In Fig. 5(a) one can clearly see that when the level of white
noise increases, then weakly entangled states do not violate
the CHSH inequality. Here we assume that a state |ψ〉 affected
by white noise becomes the state ρ ′′ = (1 − p)|ψ〉〈ψ | + p

4 1,

where 1
41 denotes the maximally mixed state. Figure 5(b)

shows the violation of the CHSH inequality for specific values
of white noise. Figures 5(c) and 5(d) show that in the case
when colored noise is considered, then all entangled states
(i.e., all values of C/S) violate the inequality. Thus the optimal
states for loophole-free experiments with colored noise are
always the very weakly entangled states since they demand
less efficiency and still violate the inequality. This is shown
in Fig. 5(c) for the photon-photon scenario and the CHSH
inequality and in Fig. 5(d) for the atom-photon scenario and
the I3322 inequality.

Obtaining analytically the local measurements that provide
simultaneously maximal violation with minimal η as a function
of C/S is not a trivial task. In the case of the CHSH inequality,
these expressions have been found for the case p = 0 [33].
Here we have obtained numerically optimal states and local
settings, assuming a violation that can actually be observed in
a Bell test (i.e., a violation greater than 0.01). Table I shows,
for two values of p, an optimal configuration for a photon-
photon Bell test using the CHSH inequality, while Table II
shows an optimal configuration for an atom-photon Bell test
using the I3322 inequality. Both tables include the required
states (i.e., the value of C/S), the expected violation, and
the corresponding ηcrit. Note that η > 0.73 guarantees that all
the requirements (including a reasonable amount of noise and
a noticeable violation) are satisfied for photon-photon Bell
test with colored noise. For an atom-photon test η > 0.49
suffices.

E. Colored noise vs white noise

For a photon-photon Bell test, both for states with white
noise and for states with colored noise, the Bell inequality
that requires the lowest ηcrit is the CHSH inequality. In Fig. 6
we compare the value of ηcrit as a function of the level p

of colored and white noise for the CHSH inequality. There
are two interesting things to observe in this figure. First, the
violation of the CHSH inequality is much more robust against
colored noise than against white noise. This can be seen by
observing that for p > 0.3 there is no violation of the CHSH
inequality for states with white noise. This is the reason why
the curve for ηcrit for states with white noise ends at p = 0.3.
However, in the case of colored noise, there is still a violation of
the CHSH inequality, even when p = 1. A similar observation
was made in Ref. [19]. Second, one can observe that for a given

TABLE II. Local settings {φi,νφi
} for the I3322 inequality in the atom-photon scenario (ηA = 1).

p C/S I3322 ηcrit φ1 φ2 φ3 φ4 φ5 φ6 νφ1 νφ2 νφ3 νφ4 νφ5 νφ6

0 0.2041 0.0462 0.4659 1.5594 4.5618 1.2335 3.1241 6.7563 5.6694 1.5187 4.6603 1.5187 4.6603 4.6603 4.6603
0.03 0.2041 0.0433 0.4826 1.5564 4.5733 1.2195 3.1215 6.7253 5.6571 1.5187 4.6603 1.5187 4.6603 4.6603 4.6603
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FIG. 6. (Color online) Minimum ηcrit for states with noise p using
the CHSH Bell inequality in the photon-photon scenario.

p, colored noise demands a lower ηcrit than the one required
when white noise is present. This argumentation is valid under
the assumption that similar values of colored and white noise
can be added to an experiment under a controlled way and
independently.

Similar observations can be made for the case of an atom-
photon Bell test. There, both for states with white noise and
for states with colored noise, the Bell inequality that requires
the lowest ηcrit is I3322. In Fig. 7 we compare the value of
ηcrit as a function of the level p of colored and white noise
for I3322. Again, the violation of I3322 is much more robust
against colored noise than against white noise. Note that the
curve for ηcrit for states with white noise ends at p = 0.2,
while for colored noise there is still a violation, even when
p = 1. Moreover, here the difference between ηcrit for a given
value of p is even larger than for a photon-photon experiment.
For example, for p = 0.2 a Bell test with entangled states
characterized by colored noise requires ηcrit = 0.55, while a
Bell test with white noise requires ηcrit = 1.

Finally, we consider another realistic scenario where both
types of noise are simultaneously present in the experiment.
More specifically, we consider the situation where both white
and colored noise are present in a photon-photon experiment
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FIG. 7. (Color online) Minimum ηcrit for states with noise p using
the I3322 Bell inequality in the atom-photon scenario.
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FIG. 8. (Color online) Minimum ηcrit while colored and white
noises are present in a CHSH Bell inequality test in the photon-photon
scenario.

based on the CHSH inequality. In Fig. 8 we show the minimum
ηcrit for the CHSH Bell inequality, in the photon-photon
scenario, for a fixed value of colored noise (3% and 6%) and
when white noise is gradually added to the entangled state of
Eq. (2). As expected, one obtains that the robustness of the
threshold efficiency degrades fast when white noise is added
to the system. Similar results shall be obtained in the case of
atom-photon experiments base on the I3322 inequality.

V. CONCLUSION

We have shown that loophole-free Bell tests based on
entangled states affected by colored noise exhibit a minimum
detection efficiency that is robust for a reasonable amount of
noise. This is at variance with the behavior observed for Bell
tests in which the noise in the final state is random (white).

For the photon-photon scenario, the most convenient Bell
inequality to test is the CHSH inequality using weakly
entangled states. We have shown that observable loophole-free
violations (ICHSH = 0.0323) can be achieved with realistic
values of the noise (p = 0.03) and requiring values of η that are
feasible using the precertification approach (η > 0.7223). For
the atom-photon scenario, the I3322 requires an even smaller η

(η > 0.4826).
These results support that Bell tests using the photon’s

precertification may be realistic candidates for a loophole-
free Bell test for both the photon-photon and atom-photon
scenarios. In addition, the analysis presented here is also valid
for other physical systems used to test Bell inequalities when
the dominant noise is colored.
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[25] J.-Å. Larsson, Phys. Rev. A 57, 3304 (1998).
[26] M. Froissart, Nuovo Cimento B 64, 241 (1981).
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